(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

+'(x, 0') → x
+'(0', x) → x
+'(s(x), s(y)) → s(s(+'(x, y)))
*'(x, 0') → 0'
*'(0', x) → 0'
*'(s(x), s(y)) → s(+'(*'(x, y), +'(x, y)))
sum(nil) → 0'
sum(cons(x, l)) → +'(x, sum(l))
prod(nil) → s(0')
prod(cons(x, l)) → *'(x, prod(l))

S is empty.
Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Innermost TRS:
Rules:
+'(x, 0') → x
+'(0', x) → x
+'(s(x), s(y)) → s(s(+'(x, y)))
*'(x, 0') → 0'
*'(0', x) → 0'
*'(s(x), s(y)) → s(+'(*'(x, y), +'(x, y)))
sum(nil) → 0'
sum(cons(x, l)) → +'(x, sum(l))
prod(nil) → s(0')
prod(cons(x, l)) → *'(x, prod(l))

Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
sum :: nil:cons → 0':s
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
prod :: nil:cons → 0':s
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
+', *', sum, prod

They will be analysed ascendingly in the following order:
+' < *'
+' < sum
*' < prod

(6) Obligation:

Innermost TRS:
Rules:
+'(x, 0') → x
+'(0', x) → x
+'(s(x), s(y)) → s(s(+'(x, y)))
*'(x, 0') → 0'
*'(0', x) → 0'
*'(s(x), s(y)) → s(+'(*'(x, y), +'(x, y)))
sum(nil) → 0'
sum(cons(x, l)) → +'(x, sum(l))
prod(nil) → s(0')
prod(cons(x, l)) → *'(x, prod(l))

Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
sum :: nil:cons → 0':s
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
prod :: nil:cons → 0':s
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))

The following defined symbols remain to be analysed:
+', *', sum, prod

They will be analysed ascendingly in the following order:
+' < *'
+' < sum
*' < prod

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)

Induction Base:
+'(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)

Induction Step:
+'(gen_0':s3_0(+(n6_0, 1)), gen_0':s3_0(+(n6_0, 1))) →RΩ(1)
s(s(+'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)))) →IH
s(s(gen_0':s3_0(*(2, c7_0))))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

Innermost TRS:
Rules:
+'(x, 0') → x
+'(0', x) → x
+'(s(x), s(y)) → s(s(+'(x, y)))
*'(x, 0') → 0'
*'(0', x) → 0'
*'(s(x), s(y)) → s(+'(*'(x, y), +'(x, y)))
sum(nil) → 0'
sum(cons(x, l)) → +'(x, sum(l))
prod(nil) → s(0')
prod(cons(x, l)) → *'(x, prod(l))

Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
sum :: nil:cons → 0':s
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
prod :: nil:cons → 0':s
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons

Lemmas:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))

The following defined symbols remain to be analysed:
*', sum, prod

They will be analysed ascendingly in the following order:
*' < prod

(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol *'.

(11) Obligation:

Innermost TRS:
Rules:
+'(x, 0') → x
+'(0', x) → x
+'(s(x), s(y)) → s(s(+'(x, y)))
*'(x, 0') → 0'
*'(0', x) → 0'
*'(s(x), s(y)) → s(+'(*'(x, y), +'(x, y)))
sum(nil) → 0'
sum(cons(x, l)) → +'(x, sum(l))
prod(nil) → s(0')
prod(cons(x, l)) → *'(x, prod(l))

Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
sum :: nil:cons → 0':s
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
prod :: nil:cons → 0':s
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons

Lemmas:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))

The following defined symbols remain to be analysed:
sum, prod

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
sum(gen_nil:cons4_0(n10352_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n103520)

Induction Base:
sum(gen_nil:cons4_0(0)) →RΩ(1)
0'

Induction Step:
sum(gen_nil:cons4_0(+(n10352_0, 1))) →RΩ(1)
+'(0', sum(gen_nil:cons4_0(n10352_0))) →IH
+'(0', gen_0':s3_0(0)) →LΩ(1)
gen_0':s3_0(*(2, 0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(13) Complex Obligation (BEST)

(14) Obligation:

Innermost TRS:
Rules:
+'(x, 0') → x
+'(0', x) → x
+'(s(x), s(y)) → s(s(+'(x, y)))
*'(x, 0') → 0'
*'(0', x) → 0'
*'(s(x), s(y)) → s(+'(*'(x, y), +'(x, y)))
sum(nil) → 0'
sum(cons(x, l)) → +'(x, sum(l))
prod(nil) → s(0')
prod(cons(x, l)) → *'(x, prod(l))

Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
sum :: nil:cons → 0':s
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
prod :: nil:cons → 0':s
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons

Lemmas:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
sum(gen_nil:cons4_0(n10352_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n103520)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))

The following defined symbols remain to be analysed:
prod

(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol prod.

(16) Obligation:

Innermost TRS:
Rules:
+'(x, 0') → x
+'(0', x) → x
+'(s(x), s(y)) → s(s(+'(x, y)))
*'(x, 0') → 0'
*'(0', x) → 0'
*'(s(x), s(y)) → s(+'(*'(x, y), +'(x, y)))
sum(nil) → 0'
sum(cons(x, l)) → +'(x, sum(l))
prod(nil) → s(0')
prod(cons(x, l)) → *'(x, prod(l))

Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
sum :: nil:cons → 0':s
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
prod :: nil:cons → 0':s
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons

Lemmas:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
sum(gen_nil:cons4_0(n10352_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n103520)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))

No more defined symbols left to analyse.

(17) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)

(18) BOUNDS(n^1, INF)

(19) Obligation:

Innermost TRS:
Rules:
+'(x, 0') → x
+'(0', x) → x
+'(s(x), s(y)) → s(s(+'(x, y)))
*'(x, 0') → 0'
*'(0', x) → 0'
*'(s(x), s(y)) → s(+'(*'(x, y), +'(x, y)))
sum(nil) → 0'
sum(cons(x, l)) → +'(x, sum(l))
prod(nil) → s(0')
prod(cons(x, l)) → *'(x, prod(l))

Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
sum :: nil:cons → 0':s
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
prod :: nil:cons → 0':s
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons

Lemmas:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
sum(gen_nil:cons4_0(n10352_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n103520)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))

No more defined symbols left to analyse.

(20) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)

(21) BOUNDS(n^1, INF)

(22) Obligation:

Innermost TRS:
Rules:
+'(x, 0') → x
+'(0', x) → x
+'(s(x), s(y)) → s(s(+'(x, y)))
*'(x, 0') → 0'
*'(0', x) → 0'
*'(s(x), s(y)) → s(+'(*'(x, y), +'(x, y)))
sum(nil) → 0'
sum(cons(x, l)) → +'(x, sum(l))
prod(nil) → s(0')
prod(cons(x, l)) → *'(x, prod(l))

Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
sum :: nil:cons → 0':s
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
prod :: nil:cons → 0':s
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons

Lemmas:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))

No more defined symbols left to analyse.

(23) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)

(24) BOUNDS(n^1, INF)